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“In the New Year, you carry all the experiences of
the past years and that is the greatest power of eve-
ry New Year! This year again, you are less student
and more master!” - Mehmet Murat ildan

I came across this sentence and found it quite
appropriate to start my last presidential address
for the Bulletin. We Bayesians use our experiences
to infer and make decisions. And this can be ap-
plied to our everyday lives. The more attention
we give to our past experiences, the greater the
chances of making choices that lead to happiness.
For the New Year, I wish you health and strength
to look carefully at your experiences, to be able
to dream new dreams and, most importantly, to
work to make them become true.

I am about to end my role as ISBA’s President.
Now it is time to look back, review where we
were, and understand where we are heading. My
aims as ISBA’s President have been to ensure that
ISBA kept involved in the activities set by former
Presidents and to propose new goals and activi-
ties.

One of the challenges faced by ISBA during
this year was the organization of ISBA 2016. The
Program Council, chaired by Michele Guindani,
together with the Local Organizing Committee,
chaired by Stefano Cabras, have been doing a
wonderful job to make sure that we have a won-

derful meeting, following the Bayesian tradition
of combining a superb scientific program with a
astonishing location. For more details on ISBA
2016 see page 5.

Bayesian Analysis (BA), the open-access elec-
tronic journal sponsored by ISBA continues to per-
form really well. It ranked 7th in the JCR in 2014
(among 119 journals in Statistics & Probability).
Marina Vanucci, the Editor-in-Chief of BA, and the
Associate Editors have been doing a wonderful
job keeping the high quality of the papers publis-
hed there. The Executive Board of ISBA, under-
stands the importance of BA and encourages all
initiatives that strengthen the contributions of the
journal to the scientific community. Starting next
year there will be changes that we believe will im-
prove BA’s visibility. For details see page 12.
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‘live’. The new production system allows readers
to read articles in a timely manner and to cite
them appropriately. All this of course has come
with a price, as ISBA is now incurring increased
costs for the new production system, in addition
to those for hosting the Journal on Project Euclid.
BA authors can help ISBA defray such costs by
paying the voluntary article charges. I strongly
encourage everybody to do so.

In closing, I wish to thank the Editors I have
worked with for making the review process run-

ning smoothly: Ming-Hui Chen, David Dahl, Da-
vid Heckerman, Lurdes Inoue, Antonietta Mira,
Igor Pruenster, Bruno Sanso, Dan Spitzner, Mark
Steel, and Kert Viele, as well as Valen Jonson and
Sonia Petrone, who were also on the board in the
first part of my 3-year term. The editors are sup-
ported by a larger number of associated editors
and a vast number of referees. Kassie Fronczyk
has been serving as the Managing Editor, and has
done a great job chasing people up. Thank you all
for your support and dedication to our Journal.
You have made these 3 years very enjoyable! s

SOFTWARE HIGHLIGHT

A MENU-DRIVEN SOFTWARE
PACKAGE FOR BAYESIAN
REGRESSION ANALYSIS1

George Karabatsos
georgek@uic.edu

1 Introduction

Regression modeling is ubiquitous in empirical
areas of scientific research. This is because most
research questions can be asked in terms of how
a dependent variable changes as a function of
one or more covariates (predictors). Applications
of regression modelling involve either prediction
analysis, categorical data analysis, causal analy-
sis, meta-analysis, survival analysis of censored
data, spatial data analysis, time-series analysis,
item response theory (IRT) analysis, and/or other
types of regression analyses.

Bayesian Regression: Nonparametric and Para-
metric Models, is a free stand-alone, user-friendly,
and fully menu-driven software package that can
be used to perform data analysis using any one
of over 80 Bayesian regression models, without
having to write code. Currently, the software in-
cludes Bayesian infinite-mixture regression mo-
dels, with mixture distribution assigned a pri-
or distribution defined by either a Dirichlet pro-
cess (Ferguson, 1973) (defining an ANOVA/linear

DDP mixture model; De Iorio, et al. 2004; Müller,
et al. 2005), the Pitman-Yor (1997) process, the
normalized stable process (Kingman, 1975), the
beta 2-parameter process (Ishwaran & Zarepour,
2000), the normalized inverse-Gaussian process
(Lijoi et al., 2005), and processes defined either
by geometric mixture weights (Fuentes-Garcia, et
al. 2009) or covariate-dependent, ordered-probits
regression mixture weights (Karabatsos & Walker,
2012b). The software also provides various pa-
rametric (finite-dimensional) Bayesian normal re-
gression models, including normal linear models,
and normal mixture models that define either 2-
level or 3-level random-effects models (or HLMs:
Hierarchical linear models). All of the nonpara-
metric and parametric mixture regression models
can handle multi-level data, and perform mixing
on either the intercept parameter, or on the inter-
cept and slope coefficient parameters.

All the nonparametric and parametric regressi-
on models of the software can handle either con-
tinuous, binary, ordinal dependent variables (in-
cluding probit and logit models), as well as con-
tinuous dependent variables subject to either left,
right, and/or interval censoring. The software al-
lows the user to perform, as a function of covaria-
tes, various posterior predictive inferences of the
dependent variable, including the mean, median,
quantiles, variance, probability density function
(p.d.f.), cumulative distribution function (c.d.f.),
survival function, hazard function, and cumulati-
ve hazard function. Therefore, the software not

1Supported by NSF-MMS research grant SES-1156372.
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only provides a traditional mean-based regressi-
on analysis, but also provides median regressi-
on, quantile regression, density regression, and
survival analysis. Many of these models are as-
signed spike-and-slab priors to provide automatic
variable (covariate) selection inference from the
posterior distribution (e.g., George & McCulloch,
1997). Finally, the software also includes versions
of the Bayesian infinite-mixture models for densi-
ty estimation.

The software implements Markov chain Monte
Carlo (MCMC) sampling methods to perform in-
ference of the posterior distribution and posteri-
or functionals. MCMC procedures for the infinite-
mixture models are based on the slice-sampler of
Kalli et al. (2011). Inference for all regression mo-
dels are based on standard Gibbs and Metropolis
sampling MCMC methods for the normal linear
model (e.g., Denison et al., 2002; see Karabatsos
& Walker, 2012a, 2012b).

2 Regression Models Provided
by the Software

As is well-known, the Bayesian linear mo-
del, with conjugate multivariate normal (N)
inverse-gamma (IG) prior, is defined by yi |xi ⇠
N(x

t
i�,�

2

), with � ⇠ N(0,�2diag(v�)), and �2 ⇠
IG(a, b). This model can be extended by the multi-
level, normal mixture model. For example, for Nh

groups of observations respectively indexed by
h = 1, . . . ,Nh, the 2-level normal random effects
linear model may be specified by Yi(h) |xi(h) ⇠
N(yi(h) |xti(h)� + x

t
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) (IW: inverted-Wishart distribu-
tion). The assumptions of normal linear models,
namely, the linearity of covariate effects, and the
normality (or unimodality) of regression error
and random effects distributions, can be violated
by data, affecting model fit and posterior infe-
rences.

Therefore, the Bayesian nonparametrics (BNP)
field has developed many infinite-mixture regres-
sion models that relax these assumptions (e.g.,
Hjort, et al. 2010; Karabatsos & Walker, 2012a,
2012b; Mitra & Müller, 2015). A highly-flexible,
BNP infinite-mixture regression model has the ge-

neral form:
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given a covariate (x) dependent, discrete mi-
xing distribution G

x

; kernel (component) den-
sities f(y |x; ,✓j(x)) with component indices
j = 1,2, . . ., respectively; with fixed parameters
 ; and with component parameters ✓j(x) ha-
ving sample space ⇥; and given mixing weights
(!j(x))

1
j=1

that sum to 1 at every x 2 X , with
X the covariate space. In the model (1), the
covariate-dependent mixing distribution is a ran-
dom probability measure that has the general
form given by (2), and is therefore an example of
a species sampling model (Pitman, 1995), where
�z(·) denotes the degenerate probability measure
�z(z) = 1, with �z(B) = 1 if z 2 B; and B(⇥) de-
notes the Borel �-field of the space ⇥ of ✓. The
infinite-mixture mixture model (1) is completed
by the specification of a prior distribution ⇧(⇣) on
the space ⌦⇣ = {⇣} of the model parameter, given
by ⇣ = ( , (✓j(x),!j(x))

1
j=1

,x 2 X ).

For example, if G
x

is assigned a Dirichlet pro-
cess prior distribution with G ⇠ DP(↵,G

0

) (as-
suming G

x

:= G), then the Bayesian model (1),
with prior distribution ⇧(⇣) on all model parame-
ters, is called a Dirichlet process mixture (DPM)
model (Lo, 1984) where the mixture distribution
(2) has stick-breaking mixture weights of the form
!j = �j

Qj�1

l=1

(1� �l), with �j |↵ ⇠ Beta(1,↵) and
✓j |G0

⇠G
0

for j = 1,2, . . . (assuming ✓j(x) := ✓j)
(Sethuraman, 1994). Furthermore, if the kernel
density functions are specified by normal density
functions, with f(y |x; ,✓j(x)) := N(y |xt�j ,�

2

)

for j = 1,2, . . ., then the model defines an ANO-
VA/linear DDP model, a DPM mixture of random
intercept linear regression models. As alternative
stick-breaking priors for G, a Pitman-Yor process
assumes �j ⇠ Beta(1 � a, b + ja) with 0  a < 1

and b >�a; the normalized �-stable process assu-
mes �j ⇠ Beta(1� a, b+ ja); the beta 2-parameter
process assumes �j ⇠ Beta(a, b) for a, b > 0;
the normalized inverse-Gaussian process assumes
�j = �

1j/(�1j + �
0j), �1j ⇠ GIG(c2/{

Qj�1

l=1

(1 �
�l)}1(j>1),1,�j/2), and �

0j ⇠ IG(1/2,2), with
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GIG the generalized inverse-Gaussian distribu-
tion (Favaro, et al., 2012); and the geome-
tric weights prior assumes �j := � and � ⇠
Be(a, b) (Fuentes-Garcia, et al. 2009). A covariate-
dependent process prior for G

x

is defined by ordi-
nal regression mixture weights

!j(x) = �

 
j � x

t�!p
exp(x

t�!)

!
��

 
j � x

t�! � 1p
exp(x

t�!)

!
,

(3)
where j = 0,±1,±2, . . . with (�!,�!) ⇠ N(µ,⌃),
and �(·) the standard normal c.d.f. (Karabatsos &
Walker, 2012b).

3 Using the Software

After starting the Bayesian Regression software,
the user may click the File menu to import
a comma-delimited data file. Before running a
Bayesian regression analysis of the data set, the
software user can mouse-click menu options: (1)
to inspect, describe, and explore the data varia-
bles via basic descriptive statistics (e.g., means,
standard deviations, quantiles/percentiles) and
graphs (e.g., scatter plots, box plots, normal Q-Q
plots, etc.); and (2) to pre-process the data of the
dependent variable and/or the covariate(s) befo-
re including the variable(s) into the BNP regres-
sion model for data analysis. Examples of data
pre-processing includes constructing new dummy
indicator (0 or 1) variables, two-way interaction
variables, and (e.g., thin-plate) spline covariates
from variables in the data set (e.g., to set up a spa-
tial data analysis); constructing lagged dependent
variables (of chosen lag order) as covariates to set
up a Bayesian auto-regression time series analy-
sis; constructing propensity score covariates to set
up a causal analysis with a regression model; and
to perform other variable transformations (e.g. z-
score transformations). Finally, the user can per-
form a nearest neighbor hot-deck imputation of
missing data.

Next, the user can then click menu options to
select a Bayesian regression model for data analy-
sis, and the model’s prior distribution parameters,
dependent variable, and covariates. If necessary,
the user can, for her/his chosen model, select the
(level-2 and possibly level-3) grouping variables
(if s/he chose a multilevel model); select the ob-
servation weights variable (e.g., to set up a meta-
analysis); and/or select the variables that indicate

whether the dependent variable is left-censored,
right-censored, interval-censored, or uncensored
(e.g., to set up a survival analysis). Finally, after
the user makes all of these menu-selections for
her/his chosen Bayesian model for data analysis,
the software immediately presents a graphic of
the model, along with all the variables that we-
re selected for this model (e.g., lists of dependent
variables, covariate(s)).

Then, the software user can click a button to
run the MCMC sampling algorithm for the menu-
selected Bayesian model, for a user-chosen num-
ber of MCMC sampling iterations. After all the
MCMC sampling iterations have completed, the
software automatically opens a text output file
that summarizes the basic results of the data ana-
lysis (calculated from the generated MCMC samp-
les). Results include point-estimates of the (mar-
ginal) posterior distributions of the model’s pa-
rameters (e.g., posterior mean, median, varian-
ce, quantiles, etc.), and summaries of the mo-
del’s predictive fit to the data. The user can al-
so click other menu options to produce graphical
and text output of the results. They include densi-
ty plots, box plots, scatter plots, trace plots, and
various plots of (marginal) posterior distributi-
ons of model parameters and fit statistics. Certain
menu options allow the user to perform MCMC
convergence analyses, via univariate trace plots
of MCMC samples of model parameters, and via
batch means (or sub-sampling) analyses to calcu-
late the 95% Monte Carlo confidence intervals for
the posterior point estimates. Other menu options
allow the user, as a function of one or more cova-
riates of interest, to graph and tabulate various
posterior predictive estimates of the dependent
variable, including the dependent variable mean,
median, quantiles, variance, p.d.f., c.d.f., survival
function, hazard function, and cumulative hazard
function.

4 Software Access

The Bayesian Regression software can be dow-
nloaded and installed for use, from: http:

//georgek.people.uic.edu/BayesSoftware.

html. This web-page also provides links to a
user’s manual (paper) for the software, which
includes a textbook-style review of Bayesian stati-
stical inference, and the MCMC methods, as well
as software-based illustrations and exercises of
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Bayesian regression modeling for the analysis of
real data. The Help menu provides user instructi-
ons, and describes all the 83 models and example
data sets that are currently provided by the soft-
ware.
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